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DEFENSE IN DEPTH AND RESOURCE
OPTIMIZATION FOR SAFEGUARDS*

Andrew Zardecki and Jack T. Markin
Safeguards Systems Group, N4
Los Alamos National Laboratory

Los Alamos, NM 87545

ABSTRACT

The resource allocation problem for safeguards is
solved by using dynamic programming. The existing
program RAOPS (Resource Allocation Optimization
Program for Safeguards) is extended to include both
divergent and convergent configurations of activities. The
new algorithm is applicable to any configuration that can be
described in terms of a tree data structure. To treat the
problem of defense in depth, a stochastic optimization—in
which the optimization applies to expected values—is
utilized. Numerical examples illustrating the general theory
are given.

1. INTRODUCTION

Selecting the safeguards elements to constitute a
system for protecting special nuclear materials (SNM) is a
complex process involving choices about those technologies
and procedures that are most effective in countering a range
- of threats. The computer program RAOPS (Resource
Allocation Optimization Program for Safeguards) developed
at Los Alamos by the Safeguards Systems Group! helps the
analyst design a safeguards system for a new facility or an
upgrade of an existing facility. For a serial arrangement of
activities, the program determines the configuration of
safeguards options that maximizes the detection probability
against a range of scenarios for theft or diversion of SNM
under the constraint of fixed safeguards resources. Here,
the term “activity" refers to an area or boundary in which one
or more safeguards elements can be deployed.

*Work -s:pponed by the US Department of Energy, Office
of Safeguards and Security.



The serial arrangement corresponds to the situation in
which the adversary sequentially encounters each safeguards
activity. This has earlier been studied by Markin et al.2 and
by Fishbone.3 Figure 1 shows a typical arrangement, with
the corresponding tree structure depicted in Fig. 2.

Fig. 1. Serial configuration of four activities.
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Fig. 2. The tree (list) structure corresponding
to Fig. 1.

In practice, though, a realistic arrangement will involve
multiple choices; for example, after penetrating the main
facility gate A, followed by the inner wall B, the adversary
has to select one of the two different storage areas, as shown
in Figs. 3 and 4. Figures 3 and 4 may be contrasted with
Figs. 1 and 2, respectively. Ste ed differently, a nonserial
configuration implies a structure in which there are branch
points in the adversary's path to his goal.

The goal of this paper is to generalize the RAOPS
algorithm to include both divergent and convergent
configurations of activities, in which the safeguards options
operate under risk. In those circumstances, the function
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Fig. 3. Divergent configuration of six activities.
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Fig. 4. The tree structure of activities
corresponding to Fig. 3.

depends on random elements that simulate the option
reliability, in addition to the state and decision variables.
With prescribed probabilities of success or failure, we can
model the system performance under risk, thus addressing
an important issue of defense in depth. In this way, w=
evaluate the performance and localize the system's weakest
link.

A word about the terminology is in order here. In the
context of safeguards, when we speak of maximizing the



detection probability, we mean maximizing the return
(objective) function. Stated equivalently, when minimizing
the nondetection probability, we minimize the return
function.

2. DISCRETE DYNAMIC PROGRAMMING
ALGORITHM

We start by listing some basic results and by
explaining our notation. For a serial system, the
multiplicative objective function is’

N
J =TT Lix(k),uck).k] . (1)
k=1

Here x(k) and u(k) refer to state variables and decision
variables at stage k. The system equations describe how the
state variables at stage k + 1 are related to the state variables
at stage k. These equations are written as

x(k + 1) = g[x(k),u(k) k] , (2)
where g is a known function.

For the resource allocation problem, g is simply a
difference of x and u:

x(k + 1) = x(k) - u(k) , 3)

and the function L[x(k),u(k)k] specifies the nondetection
probability at stage k.

The dynamic programming optimization solves the

following iterative functional equation for the optimum
return /(x,k)

I(x,k) = min (Lxoa k) x 1[g(xu k) k + 1]) @)
e



for k =1, ..., N-1, by minimizing the expression in the
curly brackets over the set U of decisions. The starting
condition is

I(x,k) = min {L(x,u,N)} . &)
uesl

This recursion procedure, called backward recursion, solves
the initial state problem, in which the optimal N-stage return
becomes a function of the input state of stage one. When
state inversion is possible, as in the resource allocation
problem, one can also use forward recursion to solve a final
state problem. In the final state problem, the optimal return
is found as a function of the stage output. Finally, the initial-
final state optimization consists in finding the optimal return
as a function of the input to stage one and the output from
stage N.

This basic dynamic programming procedure prevents
the combinatorial explosion (curse of dim:nsionality) from
occurring.4 The generalization of the basic procedure to
nonserial systems will depend on the specific form of the
configuration.5

3. DEFENSE IN DEPTH: STOCHASTIC
OPTIMIZATION

In the preceding section, the cost function at a given
stage was defined as a deterministic function of the state and
decision variables. To accomimodate a potential failure of
safeguards options, we now introduce—at each stage—a
binary stochastic variable §(k) controlling the return. The
objective function thus becomes

N
J =TT L{xtk).utk).Ek) k] 6)

k=]

where §(k) = 1 and O refer to success and failure,
respectively. We further assume that the probability of
success p(&,u,k) of a given option u at stage k is known, the
probability of failure is then regarded as the probability of a
complementary event, equai to 1 - p.

The solution to this problem of stochastic optimization
under risk is again given in terms of a recursion relation,



which applies to an expected value of the objective function.
The basic equation replacing Eq. (4) is

I{x,E.N)=min 3 p (Euk) 0
uelU 3

s (L (.t k) x I[g ey, Ek + 1))

with the starting condition given as

x.EN)=min ¥ p Euk) (L xu,tN) . @)
ueU 3

In Egs. (7) and (8), the summation over & is in fact a
weighted sum over the two possibilities of success and
failure,

4. NUMERICAL RESULTS

The foregoing considerations refer to a serial system,
in which the output of a given stage is identical to the input
of the stage directly following it. For a divergent configura-
tion, we use the backward recursion to solve the initial state
problem for an individual branch of the tree. At branch
points, we optimally split the resources among the emanating
branches. This is achieved on the basis of the minimax
principle, relevant to the worst-case scenario. In other
words, we minimize the maximum value that the cost func-
tion can take among the branches.

To illustrate our previous considerations, we analyze a
tree composed of ten nodes, as illustrated in Fig. §.
Incidentally, Aho et al.6 use the same topology to elucidate
various ways of traversing the tree.

Without loss of generality, we may assume that, for
each activity, the matrix of detection probabilities has already
been reduced to the detection probability vector. For
simplicity, we also neglect the possibiiity of optiun
combinations. Table I lists, then, the detection probabilities
for various costs.
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Fig. 5. Tree of activities.

Table I. The detection probabilities
for different activities as

functions of cost

tion Cost
0.10 T 0.13 17020
0.25 10.30 | 0.43 .
0.13 1030 [ 040 [ 0.
0.10 [ 0.20 [ 0.30 [ 0.40
0.10 1 0.20
0.15 1 .30
0.10 [ 0.20 | 0.23
0.10 1020 [0.40 | 0.60)
0.
0.40

In Table |, the cost is given in terms of arbitrary units,
and the empty entries indicate iz iack of an option. In the
absence of randomness, assuming the budget of 10 units,
we obtain the detection probability of 0.46. The optimal
allocation of resourves is 1, 3, and 3 units assigned to nodes
A, B, and C, respectively. Because the nodes B and C
absorb most of the resources, we now investigate how the
malfunction of node B affects the allocation problem. To
this end, we let fail each option associated with node B,



resulting in a probability of detection of 0.1 for each option.
We again assume that the probability of success will be 0.5.
With the total budget equal again to 10, the detection
probability becomes 0.4, whereas the resource assignment is
4, 2, and 2 units at nodes A, B, and C, respectively.

As the results of our example show, there is a strong
bias to allocate most of the resources to the nodes
neighboring the root of the activities tree. This is due to the
minimax optimization at the branch points. Only when the
detection probabilities of activities near the root are small,
will the trend arise to allocate resources to ierminal nodes.
We also note that, as formulated, the optimum resource
allocation problem is not symmetric with respect to the
direction in which the resources flow. For a convergent
configuration, we first optimize che individual branches as
functions of their inputs and the resources flowing to the
branch point. This is different from the divergent
configuration, where at each stage we use the backward
recursion.

7. CONCLUSIONS

We have generalized the optimum resource allocation
to include an arbitrary configuration of activities that can be
described as a tree data structure. From the standpoint of
safeguards, the divergent configuration corresponds tc the
fixed total budget for a facility; this budget branches to
different subfacilities.  Although the convergent
configuration presents a greater computational challenge, it
will probably be used infrequently. It essentially
corresponds to a situation in which each subfacility has an
independent budget.

To treat the problem of deivuse in depth, we use the
stochastic optimization applied to an expected value of the
objective function. This allows us to model the performance
of safeguards options. A realistic approach supplements the
probabilities of detectior. with the probability of success, or
failure, of the option under consideration.
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